概述
早在2000多年前的古罗马时期,人类就用火山灰与石灰混合作为胶凝材料,建造了许多雄伟的建筑物,例如万神殿,其直径为44m的半球形穹顶就使用了12000吨这种胶凝材料和凝灰岩轻骨料拌合而成的混凝土;还有闻名于世的圆形剧场等,这些建筑现在仍然安然无恙,2000年还有报道意大利人正在翻修圆形剧场,准备在那里面举行盛大的演出。今天在混凝土中掺用的粉煤灰,也是一种火山灰材料,大量的实践证明:掺用粉煤灰的混凝土,其长期性能得到大幅度的改善,对延长结构物的使用寿命有重要意义。
现在作为混凝土主要胶凝材料的硅酸盐水泥,同样是以石灰石和粘土为主要原料经过煅烧生成的。它问世于19世纪的30年代,至今尚不到200年历史,因此用硅酸盐水泥配制成混凝土建造的各种建筑物最长只有100多年,而国内近些年修建的一些土木工程结构物运行不多年,就出现各种病害,甚至很快就遭到严重的破坏。例如北京的西直门立交桥,运行仅20年就不得不拆除重建;更有甚者,据某省交通科研所一位所长坦言,那里的混凝土路面运行三年不坏的很少!
80年代初,美国佛罗里达州建造了一座非常宏伟的跨海大桥,在该桥的建设过程中,考虑到周围的侵蚀性环境,在混凝土里掺用了大量粉煤灰,工程质量有很大改善。因而在1983年修订规范时,对原来随意使用粉煤灰的规定进行了修订[1]。新规范(S-346)规定:在中度以上侵蚀环境中的桥梁上部结构,包括预应力构件的混凝土中,必须掺用粉煤灰。其中大体积混凝土中粉煤灰的掺量为18~50%。
什么是大体积混凝土?许多人至今仍认为那就是指大坝,也有些人把高层楼房的大型基础包括在内。可是美国混凝土学会规定:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂影响的,即称为大体积混凝土。这个问题下面还要谈到。
掺粉煤灰混凝土的另一典型实例,是1982年英国的Garwick机场的停机坪扩建工程,该工程在两条相邻的道面上对掺与不掺粉煤灰混凝土进行了对比[2]。所用粉煤灰混凝土中粉煤灰用量达到46%。该工程经运行4年后所拍的照片清楚地显示出:与纯硅酸盐水泥混凝土相对照,掺粉煤灰混凝土道面的表面层抗滑构造仍基本完好,而前者则已坑坑点点,受到一定程度的破坏了。这个实际工程事例一方面说明:在低水胶比条件下,即使掺有大量粉煤灰,也可以获得强度和耐久性都十分优异的混凝土。
1.粉煤灰的主要作用
粉煤灰在混凝土中的主要作用表现在以下几个方面:
(1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。
(2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,是水泥水化更充分。
(3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。
(4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。
(5)粉煤灰高性能混凝土的性能粉煤灰是一种呈玻璃态实心或空心的球状微颗粒,比水泥粒子小得多,比表面积极大,表面光滑致密,其成分主要是活性氧化硅或氧化铝。掺入混凝土中的粉煤灰主要产生以下几方面影响:
1.活性效应:在常温下,由于粉煤灰的水化反应比水泥慢,被粉煤灰取代的那部分水泥的早期强度得不到补偿,所以混凝土早期强度随粉煤灰掺量的增加而降低。随着时间的推移,粉煤灰中活性部分SiO2和AI2O3与水泥水化生成的Ca(OH)2发生反应,生成大量水化硅酸凝胶。粉煤灰外部的一些水化产物在成长过程中也会象树根一样伸入颗粒空隙中,填充空隙,破坏界面区Ca(OH)2的择优取向排列,大大改善了界面区,促进了混凝土后期强度的增长。
2.微集料密实填充及颗粒形态效应:均匀分散在混凝土中的粉煤灰颗粒不会大量吸水,不但起着滚珠作用,而且与水泥粒子组成了合理的微级配,减少填充水数量,影响系统的堆积状态,提高堆积密度,具有减水作用,使新拌混凝土工作性优良,硬化混凝土微结构更加均匀密实。而且,不会发生泌水离析现象,可施工性和抹面性好,抗渗性、抗冻性好。
3.交互作用:水泥、粉煤灰、外加剂等不同粉料间会产生物理、化学的交互作用。例如,水泥水化生成的Ca(OH)2是粉煤灰的活性激发剂,而被激发了的粉煤灰一旦水解,降低液相碱度,又会进一步促进未水化水泥水化。又如混凝土坍落度经时损失的原因之一是随着水化反应的进行,高效减水剂的浓度降低,通过SEM观察,发现超细粉末的粉煤灰颗粒存在大量比表面积相当大的微珠以及一定量的多孔海绵状的不规则小块,可吸附外加剂,是外加剂的理想载体由于粉煤灰水化反应缓慢,吸附在其上的高效减水剂在短时间内不会起作用,之后才随粉煤灰的水化得以逐渐释放,因此新拌粉煤灰混凝土的坍落度经时损失小。另外,目前生产的水泥含碱量不断提高,粉煤灰的使用大大节约水泥熟料,抑制碱——骨料反应;水泥中C3A含量少,水化产生的热量少,减少了混凝土构件由于内外温差过大而引起其表面开裂的危险;粉煤灰水化消耗大量Ca(OH)2,混凝土不耐蚀成分减少,因而耐化学侵蚀性比普通混凝土强得多。同时徐变、干缩等变形性能也优于普通混凝土综上所述,大掺量粉煤灰高性能混凝土具有令人满意的工作性、耐久性,力学性能也能达到设计要求,尽管早期强度低,但后期强度高,强度储备大。用高质量的粉煤灰取代部分水泥可大大改善新拌混凝土的工作性,因为:
(1)粉煤灰是由大小不等的球状颗粒的玻璃体组成,表面光滑致密,在混凝土拌合物中能起滚珠作用;
(2)新拌混凝土中水泥颗粒易聚集成团,粉煤灰的掺入可有效分散水泥颗粒,释放更多的浆体来润滑骨料;
(3)能减少用水量,使混凝土的水灰比降到更小水平,减少泌水和离析现象;
(4)具有良好的保水性,有利于泵送施工良好的工作性可大大改善混凝土的外观质量,同时也是混凝土内在质量的保证大掺量粉煤灰混凝土的良好的工作性能,对于解决目前混凝土存在的许多问题有很重要的作用。通过对粉煤灰掺量不同的新拌高性能混凝土进行坍落度试验表明,掺加粉煤灰对混凝土工作性的改善十分明显,各掺量粉煤灰混凝土的坍落度均大于基准混凝上。取代率大于40%以后,随着掺量的提高,由于粉煤灰的密度比水泥小,胶凝材料体积增大,需水量会有所上升,但即使粉煤灰掺量高达70%,混凝土坍落度仍大于基准混凝土。同时,在实践中可看到粉煤灰高性能混凝土的粘聚性·保水性好,无离析泌水现象。
2.粉煤灰在混凝土中的机理分析
(1)粉煤灰的形态效应粉煤灰的主要矿物组成是海绵状玻璃体,铝硅酸盐玻璃微珠,这些球状玻璃体表面光滑、粒度细,质地致密,内比表面积小,不仅使水泥浆需水量小,而且它们往往填充水泥浆体孔隙中,使混凝土密实性大大提高,或者在相同用水量的情况下,可增大流动性,改善和易性和可泵性。
(2)粉煤灰的微集料效应粉煤灰中的微细颗粒均匀分布在水泥颗粒之中,阻止了水泥颗粒的相互粘聚,而处于分散状态有利于水化反应的进行,同时减少了用水量,硬化后混凝土孔隙率降低,使密实度得以提高。
(3)粉煤灰的活性效应粉煤灰的活性效应也称火山灰效应,粉煤灰中的活性成份SiO2和AI2O3与水泥和石灰的水化产物在水溶液中发生反应,生成水化硅酸钙和水化铝酸钙,继而与石膏反应生成水化硫铝酸钙。上述这些反应几乎都是在水泥浆孔隙中进行的,大大降低了混凝土内部的孔隙率,改变了孔结构,提高了混凝土的密实度。
长期以来,国内外的混凝土中常掺有一定量粉煤灰,但作为水泥的替代材料,绝大多数情况下是以如下三种方式应用的:在旱期强度要求很低,长期强度大约在2535MPa的大体积混凝土中,大掺量的替代水泥使用;在结构混凝土里较少量的替代水泥(10%~25%);在强度要求很低的回填或道路基层里大量使用。由于高效减水剂的应用,使混凝土的水胶比可以大幅度降低,从而使掺用粉煤灰的性能能够大幅度的提高。
大掺量粉煤灰混凝土作为一种新型材料,具有自身独特的优越性,但是目前应用范围不大,这与人们的传统观念及技术上的差距有关。随着该项技术不断完善,大掺量粉煤灰混凝土一定会在各项建设中大显身手人类要寻求与自然和谐,大掺量粉煤灰混凝上必将以其优良的性能在保护环境、协调人类与自然的关系等方面起到积极的作用,拥有广阔的应用前景。
当然,任何事物都有它的两面性,大掺量粉煤灰混凝土也存在局限性。
其中,粉煤灰—水泥—化学外加剂之间的相容性,表现为混凝土水胶比能否有效地降低,使粉煤灰能充分发挥作用,自然是应用这种混凝土首先要检验的问题。一般来说,当水胶比只能在0.40以上时,在中等强度要求的混凝土中使用的效果就可能成问题了。其次,由于大掺量粉煤灰混凝土的水泥用量大幅度减少,因此对于水泥质量的稳定性和粉煤灰品质的稳定性就比较高,当两者的质量产生波动时,会给使用效果带来明显的影响。不过大掺量粉煤灰混凝土的水胶比较低这一特性,也有减小混凝土性能波动的益处。同时,从拌合物的工作度检验中,操作人员比较易于获得粉煤灰质量发生了波动的信息,便于及时采取措施减小或避免损失。此外,工程所在地附近一定半径范围里,有可以适用的粉煤灰来源也十分重要,过长的运输距离不仅使粉煤灰使用费用增加,也给及时满足工程对粉煤灰货源的需求带来困难。
另外,在使用大掺量粉煤灰混凝土时,需要注意以下施工条件和事项:
1) 配制混凝土的骨料级配良好,以减小空隙率,利于水胶比降低,保证使用效果;
2) 必须采用强制性搅拌机拌合这种混凝土,以保证其均匀性,由于它比较粘稠,在出机口、罐车进料口、入泵口以及摊铺过程要采取相应措施;
3) 混凝土坍落度应控制比普通混凝土减小(不影响泵送与震捣);浇注后,要及早喷洒养护剂或覆盖外露表面,但一般情况下无需喷雾或浇水养护;
4) 气温过低时,要采用保温养护措施,且适当延缓拆模时间,使混凝土硬化和强度发展满足施工需要。
文章摘自微信公众号“砼行之声”,如涉及作品内容、版权和其它问题,请及时联系,我们将尽快处理。